Petrologi adalah bidang geologi yang berfokus pada studi mengenai batuan dan kondisi pembentukannya. Ada tiga cabang petrologi, berkaitan dengan tiga tipe batuan: beku, metamorf, dan sedimen. Kata petrologi itu sendiri berasal dari kata Bahasa Yunani petra, yang berarti “batu”. Petrologi batuan beku berfokus pada komposisi dan tekstur dari batuan beku (batuan seperti granit atau basalt yang telah mengkristal dari batu lebur atau magma). Batuan beku mencakup batuan volkanik dan plutonik. Petrologi batuan sedimen berfokus pada komposisi dan tekstur dari batuan sedimen (batuan seperti batu pasir atau batu gamping yang mengandung partikel-partikel sedimen terikat dengan matrik atau material lebih halus).
Petrologi batuan metamorf berfokus pada komposisi dan tekstur dari batuan metamorf (batuan seperti batu sabak atau batu marmer yang bermula dari batuan sedimen atau beku tetapi telah melalui perubahan kimia, mineralogi atau tekstur dikarenakan kondisi ekstrim dari tekanan, suhu, atau keduanya). Petrologi memanfaatkan bidang klasik mineralogi, petrografi mikroskopis, dan analisa kimia untuk menggambarkan komposisi dan tekstur batuan. Ahli petrologi modern juga menyertakan prinsip geokimia dan geofisika dalam penelitan kecenderungan dan siklus geokimia dan penggunaan data termodinamika dan eksperimen untuk lebih mengerti asal batuan. Petrologi eksperimental menggunakan perlengkapan tekanan tinggi, suhu tinggi untuk menyelidiki geokimia dan hubungan fasa dari material alami dan sintetis pada tekanan dan suhu yang ditinggikan. Percobaan tersebut khususnya berguna utuk menyelidiki batuan pada kerak bagian atas dan mantel bagian atas yang jarang bertahan dalam perjalanan kepermukaan pada kondisi asli.
1. Pengertian Batuan Beku
Batuan beku merupakan batuan yang terjadi dai pembekuan larutan silica cair dan pijar, yang kita kenal dengan nama magma. Karena tidak adanya kesepakatan dari para ahli petrologi dalam mengklasifikasikan batuan beku mengakibatkan sebagian klasifikasi dibuat atas dasar yang berbeda-beda. Perbedaan ini sangat berpengaruh dalam menggunakan klasifikasi pada berbagai lapangan pekerjaan dan menurut kegunaannya masing-masing. Bila kita dapat menggunakan klasifikasi yang tepat, maka kita akan mendapatkan hasil yang memuaskan.
2. Penggolongan Batuan Beku
Penggolongan batuan beku dapat didasarkan pada tiga patokan utama yaitu berdasarkan genetic batuan, berdasarkan senyawa kimia yang terkadung, dan berdasarkan susunan mineraloginya.
2.1 Berdasarkan Genetik
Batuan beku terdiri atas kristal-kristal mineral dan kadang-kadang mengandung gelas, berdasarkan tempat kejadiannya (genesa) batuan beku terbagi menjadi 3 kelompok yaitu:
a. Batuan beku dalam (pluktonik), terbentuk jauh di bawah permukaan bumi. Proses pendinginan sangat lambat sehingga batuan seluruhnya terdiri atas kristal-kristal (struktur holohialin). contoh :Granit, Granodiorit, dan Gabro.
b. Batuan beku korok (hypabisal), terbentuk pada celah-celah atau pipa gunung api. Proses pendinginannya berlangsung relatif cepat sehingga batuannya terdiri atas kristal-kristal yang tidak sempurna dan bercampur dengan massa dasar sehingga membentuk struktur porfiritik. Contoh batuan ini dalah Granit porfir dan Diorit porfir.
c. Batuan beku luar (efusif) ,terbentuk di dekat permukaan bumi. Proses pendinginan sangat cepat sehingga tidak sempat membentuk kristal. Struktur batuan ini dinamakan amorf. Contohnya Obsidian, Riolit dan Batuapung.
b. Batuan beku korok (hypabisal), terbentuk pada celah-celah atau pipa gunung api. Proses pendinginannya berlangsung relatif cepat sehingga batuannya terdiri atas kristal-kristal yang tidak sempurna dan bercampur dengan massa dasar sehingga membentuk struktur porfiritik. Contoh batuan ini dalah Granit porfir dan Diorit porfir.
c. Batuan beku luar (efusif) ,terbentuk di dekat permukaan bumi. Proses pendinginan sangat cepat sehingga tidak sempat membentuk kristal. Struktur batuan ini dinamakan amorf. Contohnya Obsidian, Riolit dan Batuapung.
2.2. Berdasarkan Senyawa kimia
Berdasarkan komposisi kimianya batuan beku dapat dibedakan menjadi:
a. Batuan beku ultra basa memiliki kandungan silika kurang dari 45%. Contohnya Dunit dan Peridotit.
b. Batuan beku basa memiliki kandungan silika antara 45% – 52 %. Contohnya Gabro, Basalt.
c. Batuan beku intermediet memiliki kandungan silika antara 52%-66 %. Contohnya Andesit dan Syenit.
d. Batuan beku asam memiliki kandungan silika lebih dari 66%. Contohnya Granit, Riolit. Dari segi warna, batuan yang komposisinya semakin basa akan lebih gelap dibanding yang komposisinya asam.
b. Batuan beku basa memiliki kandungan silika antara 45% – 52 %. Contohnya Gabro, Basalt.
c. Batuan beku intermediet memiliki kandungan silika antara 52%-66 %. Contohnya Andesit dan Syenit.
d. Batuan beku asam memiliki kandungan silika lebih dari 66%. Contohnya Granit, Riolit. Dari segi warna, batuan yang komposisinya semakin basa akan lebih gelap dibanding yang komposisinya asam.
2.3. Berdasarkan susunan mineralogi
Klasifikasi yang didasarkan atas mineralogi dan tekstur akan dapat mencrminkan sejarah pembentukan battuan dari pada atas dasar kimia. Tekstur batuan beku menggambarkan keadaan yang mempengaruhi pembentukan batuan itu sendiri. Seperti tekstur granular member arti akan keadaan yang serba sama, sedangkan tekstur porfiritik memberikan arti bahwa terjadi dua generasi pembentukan mineral. Dan tekstur afanitik menggambarkan pembkuan yang cepat. Dalam klasifikasi batuan beku yang dibuat oleh Russel B. Travis, tekstur batuan beku yang didasarkan pada ukuran butir mineralnya dapat dibagi menjadi :
a. Batuan dalam Bertekstur faneritik yang berarti mineral-mineral yang menyusun batuan tersebut dapat dilihat tanpa bantuan alat pembesar.
b. Batuan gang Bertekstur porfiritik dengan massa dasar faneritik.
c. Batuan gang Bertekstur porfiritik dengan massa dasar afanitik.
d. Batuan lelehan Bertekstur afanitik, dimana individu mineralnya tidak dapat dibedakan atau tidak dapat dilihat dengan mata biasa.
b. Batuan gang Bertekstur porfiritik dengan massa dasar faneritik.
c. Batuan gang Bertekstur porfiritik dengan massa dasar afanitik.
d. Batuan lelehan Bertekstur afanitik, dimana individu mineralnya tidak dapat dibedakan atau tidak dapat dilihat dengan mata biasa.
Menurut Heinrich (1956) batuan beku dapat diklasifikasikan menjadi beberapa keluarga atau kelompok yaitu:
1. keluarga granit –riolit: bersifat felsik, mineral utama kuarsa, alkali felsparnya melebihi plagioklas
2. keluarga granodiorit –qz latit: felsik, mineral utama kuarsa, Na Plagioklas dalam komposisi yang berimbang atau lebih banyak dari K Felspar
3. keluarga syenit –trakhit: felsik hingga intermediet, kuarsa atau foid tidak dominant tapi hadir, K-Felspar dominant dan melebihi Na-Plagioklas, kadang plagioklas juga tidak hadir
4. keluarga monzonit –latit: felsik hingga intermediet, kuarsa atau foid hadir dalam jumlah kecil, Na-Plagioklas seimbang atau melebihi K-Felspar
5. keluarga syenit – fonolit foid: felsik, mineral utama felspatoid, K-Felspar melebihi plagioklas
6. keluarga tonalit – dasit: felsik hingga intermediet, mineral utama kuarsa dan plagioklas (asam) sedikit/tidak ada K-Felspar
7. keluarga diorite – andesit: intermediet, sedikit kuarsa, sedikit K-Felspar, plagioklas melimpah
8. keluarga gabbro – basalt: intermediet-mafik, mineral utama plagioklas (Ca), sedikit Qz dan K-felspar
9. keluarga gabbro – basalt foid: intermediet hingga mafik, mineral utama felspatoid (nefelin, leusit, dkk), plagioklas (Ca) bisa melimpah ataupun tidak hadir
10. keluarga peridotit: ultramafik, dominan mineral mafik (ol,px,hbl), plagioklas (Ca) sangat sedikit atau absen.
2. keluarga granodiorit –qz latit: felsik, mineral utama kuarsa, Na Plagioklas dalam komposisi yang berimbang atau lebih banyak dari K Felspar
3. keluarga syenit –trakhit: felsik hingga intermediet, kuarsa atau foid tidak dominant tapi hadir, K-Felspar dominant dan melebihi Na-Plagioklas, kadang plagioklas juga tidak hadir
4. keluarga monzonit –latit: felsik hingga intermediet, kuarsa atau foid hadir dalam jumlah kecil, Na-Plagioklas seimbang atau melebihi K-Felspar
5. keluarga syenit – fonolit foid: felsik, mineral utama felspatoid, K-Felspar melebihi plagioklas
6. keluarga tonalit – dasit: felsik hingga intermediet, mineral utama kuarsa dan plagioklas (asam) sedikit/tidak ada K-Felspar
7. keluarga diorite – andesit: intermediet, sedikit kuarsa, sedikit K-Felspar, plagioklas melimpah
8. keluarga gabbro – basalt: intermediet-mafik, mineral utama plagioklas (Ca), sedikit Qz dan K-felspar
9. keluarga gabbro – basalt foid: intermediet hingga mafik, mineral utama felspatoid (nefelin, leusit, dkk), plagioklas (Ca) bisa melimpah ataupun tidak hadir
10. keluarga peridotit: ultramafik, dominan mineral mafik (ol,px,hbl), plagioklas (Ca) sangat sedikit atau absen.
3. Faktor-Faktor yang Diperhatikan Dalam Deskripsi Batuan Beku
a. Warna Batuan
Warna batuan berkaitan erat dengan komposisi mineral penyusunnya.mineral penyusun batuan tersebut sangat dipengaruhi oleh komposisi magma asalnya sehingga dari warna dapat diketahui jenis magma pembentuknya, kecuali untuk batuan yang mempunyai tekstur gelasan. Batuan beku yang berwarna cerah umumnya adalah batuan beku asam yang tersusun atas mineral-mineral felsik,misalnya kuarsa, potash feldsfar dan muskovit. Batuan beku yang berwarna gelap sampai hitam umumnya batuan beku intermediet diman jumlah mineral felsik dan mafiknya hampir sama banyak.
Batuan beku yang berwarna hitam kehijauan umumnya adalah batuan beku basa dengan mineral penyusun dominan adalah mineral-mineral mafik.
b. Struktur Batuan
Struktur adalah kenampakan hubungan antara bagian-bagian batuan yang berbeda.pengertian struktur pada batuan beku biasanya mengacu pada pengamatan dalam skala besar atau singkapan dilapangan.pada batuan beku struktur yang sering ditemukan adalah:
a. Masif : bila batuan pejal,tanpa retakan ataupun lubang-lubang gas
b. Jointing : bila batuan tampak seperti mempunyai retakan-retakan.kenapakan ini akan mudah diamati pada singkapan di lapangan.
c. Vesikular : dicirikandengan adanya lubang-lubang gas,sturktur ini dibagi lagi menjadi 3 yaitu: Skoriaan : bila lubang-lubang gas tidak saling berhubungan.
b. Jointing : bila batuan tampak seperti mempunyai retakan-retakan.kenapakan ini akan mudah diamati pada singkapan di lapangan.
c. Vesikular : dicirikandengan adanya lubang-lubang gas,sturktur ini dibagi lagi menjadi 3 yaitu: Skoriaan : bila lubang-lubang gas tidak saling berhubungan.
Pumisan : bila lubang-lubang gas saling berhubungan.
Aliran : bila ada kenampakan aliran dari kristal-kristal maupun lubang gas.
d. Amigdaloidal : bila lubang-lubang gas terisi oleh mineral-mineral sekunder.
d. Amigdaloidal : bila lubang-lubang gas terisi oleh mineral-mineral sekunder.
c. Tekstur Batuan
Pengertian tekstur batuan mengacu pada kenampakan butir-butir mineral yang ada di dalamnya, yang meliputi tingkat kristalisasi, ukuran butir, bentuk butir, granularitas, dan hubungan antar butir (fabric). Jika warna batuan berhubungan erat dengan komposisi kimia dan mineralogi, maka tekstur berhubungan dengan sejarah pembentukan dan keterdapatannya. Tekstur merupakan hasil dari rangkaian proses sebelum,dan sesudah kristalisasi. Pengamatan tekstur meliputi :
1. Tingkat kristalisasi
Tingkat kristalisasi batuan beku dibagi menjadi:
- Holokristalin, jika mineral-mineral dalam batuan semua berbentuk kristal-kristal.
- Hipokristalin, jika sebagian berbentuk kristal dan sebagian lagi berupa mineral gelas.
- Holohialin, jika seluruhnya terdiri dari gelas.
b. Ukuran kristal
Ukuran kristal adalah sifat tekstural yang paling mudah dikenali.ukuran kristal dapat menunjukan tingkat kristalisasi pada batuan.
c. Granularitas
Pada batuan beku non fragmental tingkat granularitas dapat dibagi menjadi beberapa macam yaitu:
Equigranulritas Disebut equigranularitas apabila memiliki ukuran kristal yang seragam. Tekstur ini dibagi menjadi 2:
Equigranulritas Disebut equigranularitas apabila memiliki ukuran kristal yang seragam. Tekstur ini dibagi menjadi 2:
- Fenerik Granular
bila ukuran kristal masih bisa dibedakan dengan mata telanjang
- Afinitik
apabila ukuran kristal tidak dapat dibedakan dengan mata telanjang atau ukuran kristalnya sangat halus.
Inequigranular Apabila ukuran kristal tidak seragam. Tekstur ini dapat dibagi lagi menjadi :
- Faneroporfiritik bila kristal yang besar dikelilingi oleh kristal-kristal yang kecil dan dapat dikenali dengan mata telanjang
- Porfiroafinitik,bila fenokris dikelilingi oleh masa dasar yang tidak dapat dikenali dengan mata telanjang.
- Gelasan (glassy) Batuan beku dikatakan memilimki tekstur gelasan apabila semuanya tersusun atas gelas.
4. Bentuk Butir
- Euhedral, bentuk kristal dari butiran mineral mempunyai bidang kristal yang sempurna.
- Subhedral,bentuk kristal dari butiran mineral dibatasi oleh sebagian bidang kristal yang sempurna.
- Anhedral, berbentuk kristal dari butiran mineral dibatasi oleh bidang kristal yang tidak sempurna.
Komposisi Mineral
Berdasarkan mineral penyusunnya batuan beku dapat dibedakan menjadi 4 yaitu:
1. Kelompok Granit –Riolit Berasal dari magma yang bersifat asam,terutama tersusun oleh mineral-mineral kuarsa ortoklas, plaglioklas Na, kadang terdapat hornblende,biotit,muskovit dalam jumlah yang kecil.
2. Kelompok Diorit – Andesit Berasal dari magma yang bersifat intermediet,terutama tersusun atas mineral-mineral plaglioklas, Hornblande, piroksen dan kuarsa biotit,orthoklas dalam jumlah kecil
3. Kelompok Gabro – Basalt Tersusun dari magma yang bersifat basa dan terdiri dari mineral-mineral olivine,plaglioklas Ca,piroksen dan hornblende.
4. Kelompok Ultra Basa Tersusun oleh olivin dan piroksen.mineral lain yang mungkin adalah plagliokals Ca dalam jumlah kecil.
2. Kelompok Diorit – Andesit Berasal dari magma yang bersifat intermediet,terutama tersusun atas mineral-mineral plaglioklas, Hornblande, piroksen dan kuarsa biotit,orthoklas dalam jumlah kecil
3. Kelompok Gabro – Basalt Tersusun dari magma yang bersifat basa dan terdiri dari mineral-mineral olivine,plaglioklas Ca,piroksen dan hornblende.
4. Kelompok Ultra Basa Tersusun oleh olivin dan piroksen.mineral lain yang mungkin adalah plagliokals Ca dalam jumlah kecil.
e. Derajat Kristalisasi
Derajat kristalisasi mineral dalam batuan beku, terdiri atas 3 yaitu :
- Holokristalin
Tekstur batuan beku yang kenampakan batuannya terdiri dari keseluruhan mineral yang membentuk kristal, hal ini menunjukkan bahwa proses kristalisasi berlangsung begitu lama sehingga memungkinkan terbentuknya mineral – mineral dengan bentuk kristal yang relatif sempurna.
- Hipokristalin
Tekstur batuan yang yang kenampakannya terdiri dari sebagaian mineral membentuk kristal dan sebagiannya membentuk gelas, hal ini menunjukkan proses kristalisasi berlangsung relatif lama namun masih memingkinkan terbentuknya mineral dengan bentuk kristal yang kurang.
- Holohyalin
Tekstur batuan yang kenampakannya terdiri dari mineral yang keseluruhannya berbentuk gelas, hal ini menunjukkan bahwa proses kristalisasi magma berlangsung relatif singkat sehingga tidak memungkinkan pembentukan mineral – mineral dengan bentuk yang sempurna.
f. Sifat Batuan
Sifat Batuan Beku dibagi menjadi 3 antara lain :
Asam (Felsik)
Batuan beku yang berwarna cerah umumnya adalah batuan beku asam yang tersusun atas mineral-mineral felsik.
Batuan beku yang berwarna cerah umumnya adalah batuan beku asam yang tersusun atas mineral-mineral felsik.
Intermediet
Batuan beku yang berwarna gelap sampai hitam umumnya batuan beku intermediet diman jumlah mineral felsik dan mafiknya hampir sama banyak.
Batuan beku yang berwarna gelap sampai hitam umumnya batuan beku intermediet diman jumlah mineral felsik dan mafiknya hampir sama banyak.
Basa (Mafik)
Batuan beku yang berwarna hitam kehijauan umumnya adalah batuan beku basa dengan mineral penyusun dominan adalah mineral-mineral mafik.
Batuan beku yang berwarna hitam kehijauan umumnya adalah batuan beku basa dengan mineral penyusun dominan adalah mineral-mineral mafik.
Ultrabasa (Ultramafik )
Batuan beku yang berwarna kehijauan dan berwarna hitam pekat dimna tersusun oleh mineral – mineral mafic seperti olivin.
Mineralisasi dan Alterasi dalam Sistem Hidrotermal
Larutan hidrotermal terbentuk pada fase akhir siklus pembekuan magma. Interaksi antara larutan hidrotermal dengan batuan yang dilewati akan menyebabkan terubahnya mineral-mineral penyusun batuan samping dan membentuk mineral alterasi. Larutan hidrotermal tersebut akan terendapkan pada suatu tempat membentuk mineralisasi (Bateman, 1981). Faktor-faktor dominan yang mempengaruhi pengendapan mineral di dalam sistem hidrotermal terdiri dari empat macam (Barnes, 1979; Guilbert dan Park, 1986), yaitu: (1) Perubahan temperatur; (2) Perubahan tekanan; (3) Reaksi kimia antara fluida hidrotermal dengan batuan yang dilewati; dan (4) Percampuran antara dua larutan yang berbeda. Temperatur dan pH fluida merupakan faktor terpenting yang mempengaruhi mineralogi sistem hidrotermal. Tekanan langsung berhubungan dengan temperatur, dan konsentrasi unsur terekspresikan di dalam pH batuan hasil mineralisasi (Corbett dan Leach, 1996).
Guilbert dan Park (1986) mengemukakan alterasi merupakan perubahan di dalam komposisi mineralogi suatu batuan (terutama secara fisik dan kimia), khususnya diakibatkan oleh aksi dari fluida hidrotermal. Alterasi hidrotermal merupakan konversi dari gabungan beberapa mineral membentuk mineral baru yang lebih stabil di dalam kondisi temperatur, tekanan dan komposisi hidrotermal tertentu (Barnes, 1979; Reyes, 1990 dalam Hedenquist, 1998). Mineralogi batuan alterasi dapat mengindikasikan komposisi atau pH fluida hidrotermal (Henley et al., 1984 dalam Hedenquist, 1998).
Corbett dan Leach (1996) mengemukakan komposisi batuan samping berperan mengkontrol mineralogi alterasi. Mineralogi skarn terbentuk di dalam batuan karbonatan. Fase adularia K-feldspar dipengaruhi oleh batuan kaya potasium. Paragonit (Na-mika) terbentuk pada proses alterasi yang mengenai batuan berkomposisi albit. Muskovit terbentuk di dalam alterasi batuan potasik.
Sistem pembentukan mineralisasi di lingkaran Pasifik secara umum terdiri dari endapan mineral tipe porfiri, mesotermal sampai epitermal (Corbett dan Leach, 1996). Tipe porfiri terbentuk pada kedalaman lebih besar dari 1 km dan batuan induk berupa batuan intrusi. Sillitoe, 1993a (dalam Corbett dan Leach, 1996) mengemukakan bahwa endapan porfiri mempunyai diameter 1 sampai > 2 km dan bentuknya silinder.
Tipe mesotermal terbentuk pada temperatur dan tekanan menengah, dan bertemperatur > 300oC (Lindgren, 1922 dalam Corbett dan Leach, 1996). Kandungan sulfida bijih terdiri dari kalkopirit, spalerit, galena, tertahidrit, bornit, dan kalkosit. Mineral penyerta terdiri dari kuarsa, karbonat (kalsit, siderit, rodokrosit), dan pirit. Mineral alterasi terdiri dari serisit, kuarsa, kalsit, dolomit, pirit, ortoklas, dan lempung.
Tipe epitermal terbentuk di lingkungan dangkal dengan temperatur < 300oC, dan fluida hidrotermal diinterpretasikan bersumber dari fluida meteorik. Endapan tipe ini merupakan kelanjutan dari sistem hidrotermal tipe porfiri, dan terbentuk pada busur magmatik bagian dalam di lingkungan gunungapi kalk-alkali atau batuan dasar sedimen (Heyba et al., 1985 dalam Corbett dan Leach, 1996). Sistem ini umumnya mempunyai variasi endapan sulfida rendah dan sulfida tinggi (gambar 4). Mineral bijih terdiri dari timonidsulfat, arsenidsulfat, emas dan perak, stibnite, argentit, cinabar, elektrum, emas murni, perak murni, selenid, dan mengandung sedikit galena, spalerit, dan galena. Mineral penyerta terdiri dari kuarsa, ametis, adularia, kalsit, rodokrosit, barit, flourit, dan hematit. Mineral alterasi terdiri dari klorit, serisit, alunit, zeolit, adularia, silika, pirit, dan kalsit.
Gambar 3: Model mineralisasi emas-perak lingkaran Pasifik
(Corbett, 2002)
Gambar 4: Model fluida sulfida tinggi dan rendah (Corbett dan Leach, 1996)
Morrison, 1997, mengemukakan beberapa asosiasi mineral petunjuk sistem hipogen dalam proses magmatik yang berhubungan dengan mineralisasi epigenetik sebagai berikut:
Tabel 1: Asosiasi mineral petunjuk sistem hipogen dalam proses magmatik yang
berhubungan dengan mineralisasi epigenetik (Morrison, 1997).
Zonasi alterasi dapat mempunyai bentuk geometri yang berbeda-beda, mulai dari bentuk konsentris, linier, sampai tidak teratur dan komplek. Zonasi alterasi endapan Porfiri Cu mempunyai bentuk konsentris. Bagian inti/tengah terdiri dari alterasi potasik, berkomposisi potasium feldspar dan biotit. Bagian tengah merupakan zonasi alterasi philik tersusun oleh kuarsa-serisit-pirit. Bagian paling luar mempuyai alterasi propilitik, mineraloginya tersusun oleh kuarsa-klorit-karbonat, dan setempat-setempat terdapat epidot, albit atau adularia. Endapan epitermal berbentuk urat/vein yang berasosiasi dengan struktur mayor mempunyai pola linier dan paralel dengan arah struktur. Urut-urutan zonasi alterasi dari temperatur tinggi ke temperatur rendah adalah argilik sempurna, serisit, argilik, dan propilitik.
Mineralisasi/alterasi endapan urat yang berasosiasi dengan endapan logam dasar dicirikan oleh zonasi pembentukan mineral dari temperatur tinggi sampai rendah. Urat/vein di daerah proksimal kaya kandungan tembaga dan rasio logam dibanding sulfur tinggi. Daerah ini dicirikan oleh hadirnya alterasi argillik sempurna di bagian dalam dan ke arah luar berubah menjadi alterasi serisitik. Daerah distal kaya kandungan timbal dan zeng, dan terdiri dari mineral sulfida dengan rasio logam dibanding sulfur rendah. Alterasi yang berkembang di daerah ini berupa alterasi propilitik, semakin ke arah jauh dari urat tersusun oleh batuan tidak teralterasi (Panteleyev, 1994; Corbett, 2002).
Tabel 2: Dominasi komposisi mineralisasi/alterasi pada temperatur tinggi dan rendah
(disederhanakan dari Corbett, 2002)
TEMPERATUR TINGGI | TEMPERATUR RENDAH |
Kalkopirit | Galena, spalerit |
Kuarsa kristalin (comb stucture) | Kalsedon-opal |
Kuarsa butir kasar | Kuarsa butir halus |
Serisit | Smektit-illit |
Philik | Propilitik |
Gambar 5: Zonasi proksimal – distal tipe endapan urat logam dasar yang berasosiasi dengan endapan porfiri tembaga/molibdenum (Panteleyev, 1994)
GuilbertdanPark, 1986, mengemukakan model hubungan antara mineralisasi dan alterasi dalam sistem epitermal (gambar 6). Beberapa asosiasi mineral bijih maupun mineral skunder erat hubungannya dengan besar temperatur larutan hidrotermal pada waktu mineralisasi. Mineral bijih galena, sfalerit dan kalkopirit terbentuk pada horison logam dasar bagian bawah dengan temperatur ≥ 350oC. Pada horison ini alterasi bertipe argilik sempurna dan terbentuk mineral alterasi temperatur tinggi seperti adularia, albit dan feldspar. Fluida hidrotermal di horison logam dasar (bagian tengah) bertemperatur antara 200o- 400oC. Mineral bijih terdiri dari argentit, elektrum, pirargirit dan proustit. Mineral ubahan terdiri dari serisit, adularia, ametis, sedikit mengandung albit. Horison bagian atas terbentuk pada temperatur < 200oC. Mineral bijih terdiri dari emas di dalam pirit, Ag-garamsulfo dan pirit. Mineral ubahan berupa zeolit, kalsit, agat.
Gambar 6: Alterasi hubungannya dengan mineralisasi dalam tipe endapan epitermal
logam dasar (Guilbert dan Park, 1986)
Berdasarkan pada kisaran temperatur dan pH, komposisi alterasi pada sistem emas-tembaga hidrotermal di lingkaran Pasifik dapat dikelompokan menjadi 6 tipe alterasi (Corbett dan Leach, 1996), yaitu:
1) Argilik sempurna (silika pH rendah, alunit, dan group mineral alunit-kaolinit.
2) Argilik tersusun oleh anggota kaolin (halosit, kaolin, dikit) dan illit (smektit, selang-seling illlit-smektit, illit) dan group mineral transisi (klorit-illit).
3) Philik tersusun oleh anggota kaolin (piropilit-andalusit) dan illit (serisit-mika putih) berasosiasi dengan mineral pada temperatur tinggi seperti serisit-mika-klorit.
4) Subpropilitik tersusun oleh klorit-zeolit yang terbentuk pada temperatur rendah dan propilitik tersusun oleh klorit-epidot-aktinolit terbentuk pada temperatur rendah.
5) Potasik tersusun oleh biotit-K-feldspar-aktinolit+klinopiroksen.
6) Skarn tersusun oleh mineral kalk-silikat (Ca-garnet, klinopiroksen, tremolit).
Gambar 7: Mineralogi alterasi di dalam sistem hidrotermal (Corbett dan Leach, 1996)
Genesa/Genesis mineral merupakan tempat atau lingkungan dimana suatu mineral terbentuk. Ada 3 macam genesa mineral, yaitu:
- Lingkungan magmatik
- Lingkungan sedimen
- Lingkungan metamorfik
A. Lingkungan Magmatik
Lingkungan ini mempunyai karakter yang sangat khas, yaitu memiliki tekanan dan temperatur yang sangat tinggi, dan tentunya sangat berhubungan dengan aktivitas magma. Berdasarkan keterjadiannya, lingkungan magmatik ini dibagi menjadi empat tipe, yaitu Batuan beku, Pegmatit, Urat hidrotermal, dan Deposit mata air panas.
1. Batuan Beku
Tersusun atas mineral-mineral yang sederhana. Terdapat 7 kelompok mineral yang terdapat pada batuan beku, yaitu : kelompok kuarsa, feldspar, feldspatoid, piroksen, hornblende, biotit, dan olivin. Kisaran jumlah dari mineral-mineral penting yang terdapat dalam batuan beku sangat lebar. Ada juga batuan beku yang mengandung hampir 100% mineral yang sama, contohnya seperti Dunityang hampir seluruhnya tersusun atas mineral olivine.
Berdasarkan warnanya, mineral batuan beku dibagi menjadi 3 kelompok, yaitu Leucocratic (terang),Mesocratic (sedang), dan Melanocratic (gelap).Pengelompokkan ini didasarkan pada kandungan dari mineral fero-magnesium. Semakin banyak kandungan mineral tersebut, maka warna nya akan semakin gelap.
Lingkungan geologi tertentu akan memberikan pengaruh tertentu yang tercermin terhadap ukuran butir mineralnya. Selain itu tekstur pada batuan beku juga mencerminkan kondisi pembekuannya, urutan kristalisasi, komposisi, viskositas magma, kecepatan pembekuan, dan pertumbuhan kristalnya.
Pembekuan kristal yang cepat akan menghasilkan kristal yang kecil. Hal ini disebabkan karena tidak tersedia waktu yang cukup untuk membentuk kristal yang sempurna. Biasanya terjadi di permukaan saat kontak langsung dengan air ataupun udara saat magma keluar. Tekstur yang dihasilkan adalah afanitik (halus). Sedangkan, pembekuan yang lambat akan menghasilkan membentuk kristal yang besar, karena masih memiliki waktu yang cukup untuk membentuk itu. Pembekuan yang lambat ini terjadi di dalam perut bumi, dan menghasilkan batuan beku dengan tekstur faneritik(kasar).
Berdasarkan kandungan SiO2 nya, batuan beku dibedakan menjadi 4 jenis.
Batuan beku asam yang mengandung lebih dari 65% silika, ex: Granit.
Batuan beku asam yang mengandung lebih dari 65% silika, ex: Granit.
Batuan beku menengah (intermediate) yang mengandung silika antara 53%-65%, ex: Diorit, Syenit.
Batuan beku basa dengan kandungan silika antara 45%-53%, ex: Gabbro.
Batuan beku ultrabasa yang mengandung silika <45 dunit="dunit" ex:="ex:" peridotit.="peridotit." span="span">45>
2. Pegmatit dan Urat-Urat Hidrotermal
Pegmatit ini terbentuk dari cairan silikat sisa proses kristalisasi fraksional yang kaya akan kandungan alkali, alumunium, mengandung air, dan zat volatil. Cairannya tidak selalu berbentuk cair disebabkan karena konsentrasi volatil. Apabila mencukupi, tekanan volatil akan menginjeksi cairan di sepanjang permukaan lemah pada batuan yang merupakan bagian dari batuan beku intrusi yang sama, ataupun batuan lain yang sudah terbentuk lebih awal.
Kebanyakan pegmatit yang dijumpai berasosiasi dengan batuan plutonik, umumnya granit. Pegmatit granit terutama tersusun oleh kuarsa dan feldspar alkali, serta sejumlah muskovit dan biotit. Dengan demikian, komposisinya mirip dengan granit, namun berbeda dalam tekstur. Pegmatit bertekstur khusus, yaitu berbutir sangat kasar, dan berbentuk tabular.
3. Deposit Hidrotermal
Merupakan pengembangan dari pegmatit. Ciri-cirinya adalah urat-urat yang mengandung sulfida, yang mengisi rekahan pada batuan semula. Namun juga dapat berupa suatu massa tak teratur, yang mengganti seluruh atau sebagian batuan. Proses hidrotermal ini merupakan suatu proses yang penting dalam pembentukan mineral-mineral bijih. Berdasarkan tingkat kedalaman dan suhunya, deposit hidrotermal dibagi menjadi 3 jenis, yaitu :
- Deposit hidrotermal : suhu antara 300-500 derajat C, dan terbentuk di kedalaman yang sangat dalam. Dicirikan oleh mineral Molibdenit[MoS2], Kasiterit [SnO2], Skhelit [CaWO4].
- Deposit mesotermal : suhu antara 200-300 derajat C, dengan kedalaman yang menengah. Mineral yang mecirikannya adalah mineral-mineral sulfida seperti Pirit [FeS2], Galena[PbS]. Urat kuarsa mengandung emas yang merupakan suatu deposit penting, mungkin adalah deposit mesotermal.
- Deposit epitemal : terbentuk pada temperatur rendah, antara 50-200 derajat C. Mineral pencirinya adalah Perak native [Ag], Emas native [Au], Silvanit [(Au,Ag)Te2].
4. Deposit Air Panas dan Fumarol
Deposit air panas merupakan hidrotermal yang sampai ke permukaan. Mineral yang dijumpai adalah silika opal, sejumlah kecil sulfur, dan sulfida. Sedangkan, deposit fumarol terdapat pada gunungapi yang masih aktif. Gas-gas panasnya mengendapkan mineral-mineral seperti sulfur, dan khlorida, terutama Khlorida Amonium [NH3Cl]. Selain itu, mungkin juga terdapat Magnetit [Fe3O4], Hematite[Fe2O3], dan Realgar [AsS].
B. Lingkungan Sedimen
Proses sedimentasi merupakan perpaduan dari interaksi atmosfer dan hidrosfer terhadap lapisan kerak bumi. Dalam proses sedimentasi terdapat fase pelapukan, yang dapat menyebabkan mineral berubah menjadi mineral-mineral baru yang bersifat lebih stabil daripada sebelumnya.
Pada kebanyakan lingkungan pengendapan, proses yang berlangsung adalah oksidasi karena terkena pengaruh dari atmosfer. Namun, di beberapa tempat ada yang tidak terkena kontak atmosfer, sehingga proses yang berlangsung adalah reduksi.
Berdasarkan stabilitas mineralnya, lingkungan sedimen dibagi menjadi 6 klasifikasi:
1. Resistat
Merupakan endapan yang tersusun atas mineral yang tahan terhadap pelapukan, sehingga tidak mengalami perubahan. Salah satu mineral yang dikenal paling tahan terhadap pelapukan adalah Kuarsa [SiO2]. Kadar silika dalam sedimen-sedimen resistat dapat mencapai 90%, sehingga sangat cocok untuk digunakan sebagai sumber dalam perindustrian.
Mineral-mineral lainnya yang tahan terhadap pelapukan adalah Zirkon [ZrSiO4], Andalusit [Al2SiO5], Topaz [Al2SiO4(OH,F)2]. Endapan resistat disebut juga sebagai “placer deposit” karena bernilai ekonomi.
2. Hidrolisat
Terbentuk dari mineral-mineral silikat yang mengalami proses dekomposisi kimia. Mineral yang paling umum terdapat di endapan ini adalah mineral lempung, berupa aluminosilikat hidrat yang bertekstur filosilikat dengan ukuran butir yang sangat halus.
Di daerah tropis, tempat dimana perbedaan basah dan kering sangat kontras, proses pelapukan akan terjadi lebih baik, dan dapat menghasilkan endapan aluminosilikat yang sangat bagus. Yaitu, dengan hilangnya kandungan silika, dan meninggalkan residu berupa oksida alumunium hidrat, seperti Gibsit [Al(OH)3]. Residu ini dikenal dengan “endapan bauksit”, merupakan endapan komersial yang menghasilkan bijih alumunium.
3. Oksidat
Merupakan endapan hidroksida feri, yang merupakan hasil oksidasi senyawa besi dalam suatu larutan, dan mengendap. Contohnya adalah Gutit [HFeO2] yang memberikan warna coklat, dan Hematit [Fe2O3] yang memberikan warna merah. Bila kedua mineral ini terdapat dalam jumlah yang besar, maka dapat menjadi sangat bernilai karena bijih besinya.
Mineral lainnya yang terdapat pada endapan oksidat adalah mangan. Contohnya adalah Manganit [MnO(OH)], dan Psilomelane [(Ba,H2O)2Mn5O10], yang sebagian besar tersusun atas MnO2.
4. Reduzat
Terbentuk karena proses reduksi, dikarenakan tempat terbentuknya yang terisolir dari atmosfer, sehingga kekurangan oksigen. Endapan jenis ini jarang sekali dijumpai.
Di laut, biasanya endapan ini terdapat pada daerah palung. Dengan kondisi yang tenang, pengendapan material-material organik, akan menyebabkan berkurangnya oksigen, dan terbentuk H2S. Contoh mineral yang terbentuk adalah Pirit (pada keadaan asam), dan Markasit (pada keadaan yang lebih asam).
Di darat, pengendapan dari bahan rombakan tumbuhan-tumbuhan akhirnya akan berubah menjadi lapisan-lapisan batubara. Dengan keadaan reduksi yang tinggi, memungkinkan terjadinya pengendapan karbonat fero berupa Siderit, yang dapat digunakan menjadi deposit bijih besi.
Mineral lain yang terbentuk dalam suasana reduksi adalah Sulfur [Cu], yang biasanya dijumpai berasosiasi dengan kubah garam dan minyak bumi.
5. Presipitat
Endapan ini berhubungan dengan berbagai aktivitas organisme yang mensekresi gamping, maka dari itu tempat yang paling baik bagi pengendapan jenis ini (karbonatan) adalah di bawah laut.
Bentuk kalsium karbonat yang paling stabil adalahKalsit, namun dapat juga terbentuk Aragonit. Araganit dapat berubah menjadi kalsit, ataupun tetap menjadi aragonit, hal itu dapat terjadi apabila strukturnya berubah menjadi lebih stabil, karena kandungan ion-ion asing. Selain itu, kalsit dan aragonit dapat diendapkan di lingkungan terestrial, seperti di dalam gua batugamping, yang di sekelilingnya terdapat mata air yang jenuh akan kandungan CaCO3.
Salah satu presipitat laut yang jarang ditemukan, namun sangat bernilai dari segi ekonomi adalah Fosforit yang digunakan sebagai sumber pupuk fosfat.Seperti yang kita ketahui, air laut di bagian dasar samudera sangat jenuh oleh fosfat kalsium, dan karena terjadi perubahan pada kondisi fisik-kimianya, walaupun hanya sedikit akan menyebabkan fosforit terpresipitasi. Bila sedimentasi dari bahan-bahan lainnya lebih sedikit, maka akan terbentuk lapisan fosforit yang lebih murni.
6. Evaporit
Proses penting dalam pembentukan sedimen evaporit adalah penguapan. Endapan ini mempunyai fungsi khusus, yaitu untuk menginterpretasi sejarah geologi daerah itu, sebagai indikator untuk keadaan yang kering. Berdasarkan asal mula pengendapannya, sedimen evaporit dibagi menjadi 2, yaitu:
Endapan evaporit marin terbentuk di laut yang disebabkan oleh air laut yang menguap. Apabila air laut menguap pada keadaan yang alami, maka yang pertama kali akan mengendap adalah kalsium karbonat, diikuti oleh dolomit. Dengan berlanjutnya evaporasi, terendapkanlah kalsium sulfat, yang dapat berupa gipsum, yang bergantung kepada temperatur dan salinitas air laut, dan pada giliran berikutnya akan terbentuk halit. Kebanyakan endapan evaporit terdiri atas kalsium karbonat, namun pada keadaan tertentu dapat juga terendapkan garam kalsium dan magnesium.
Endapan evaporit non marin relatif jarang ditemui, atau sangat terbatas, baik dalam penyebarannya maupun besarnya, tetapi sangat penting dalam arti ekonomi, karena endapan ini menghasilkan senyawa Boron [B] dan Yodium[I]. Endapan ini terbentuk di darat karena menguapnya suatu danau garam. Disamping kedua senyawa tadi, terkandung pula nitrat-nitrat, sejumlah garam kalsium, bromida, dan gipsum.
C. Lingkungan Metamorfik
Lingkungan ini berada jauh di bawah permukaan bumi dengan suhu dan tekanan ekstrem yang menyebabkan re-kristalisasi pada material batuan, namun tetap terjadi pada fase padat. Faktor lain yang sangat penting dalam metamorfisme adalah aksi dari cairan kemikalia aktif, karena cairan tersebut dapat merangsang terjadinya reaksi melalui larutan dan pengendapan kembali. Jika terjadi perubahan material batuan yang disebabkan oleh cairan ini, maka prosesnya disebut dengan metasomatisme.
1. Tipe-Tipe Metamorfisme & Batuan Metamorf
Terdapat 2 tipe metamorfisme, yaitu metamorfisme termal, dan regional. Metamorfisme termal adalah tipe metamorfisme adalah tipe yang berkembang di sekitar tubuh batuan plutonik. Pada tipe ini, temperatur metamorfisme ditentukan oleh jauh dekatnya dengan intrusi magma. Batuan khas dari metamorfisme ini adalah batutanduk (hornfels). Batu ini mempunyai butir yang halus, dan terkadang mengandung mineral yang mempunyai kristal yang besar. Berdasarkan komposisi mineralnya, batutanduk terbagi menjadi batutanduk biotit, piroksen, dan silikat gamping.
Metamorfisme regional adalah jenis metamorfisme yang berkembang pada suatu daerah yang sangat luas, sekitar 1.500 km persegi. Batuan khas dari metamorfisme ini adalah Gneiss, yang merupakan batuan yang berfoliasi kasar, yang berupa suaru lapisan yang kontras dengan tebal 1-10mm, dan biasanya berseling di antara mineral terang dan gelap. Sedangkan Sekis adalah batuan foliasi halus dengan laminasi yang berkembang baik, sehingga, jika batuan itu pecah, maka akan terpecah pada bidang laminasi tersebut.
2. Mineralogi Batuan Metamorf
Seperti yang sudah disebutkan sebelumnya, faktor utama yang mengontrol derajat metamorfisme adalah temperatur. Namun, batas antara temperatur setiap derajat metamorfisme tidak dapat diketahui secara pasti.
Dalam prakteknya, derajat metamorfisme dapat diketahui dengan mineraloginya. Yaitu dengan melihat mineral yang hilang dan muncul secara bersamaan. Contohnya, Biotit adalah mineral yang paling umum di batuan metamorf, namun tidak ditemukan di metamorf yang berderajat rendah, dan digantikan dengan Muskovit dan Khlorit.
Dalam batuan metamorf berderajat rendah, mineral plagioklas muncul sebagai albit, yang akan bertambah kandungan kalsiumnya seiring dengan meningkatnya derajat metamorfisme. Mineral lain seperi kuarsa dapat ditemukan hampir di semua derajat metamorfisme, sehingga tidak bisa dijadikan indikator dari derajat metamorfisme.
Hidrothermal adalah larutan sisa magma yang bersifat “aqueous” sebagai hasil differensiasi magma. Hidrothermal ini kaya akan logam-logam yang relative ringan, dan merupakan sumber terbesar (90%) dari proses pembentukan endapan. Berdasarkan cara pembentukan endapan, dikenal dua macam endapan hidrothermal, yaitu :
- Cavity filing, mengisi lubang-lubang ( opening-opening ) yang sudah ada di dalam batuan.
- Metasomatisme, mengganti unsur-unsur yang telah ada dalam batuan dengan unsur-unsur baru dari larutan hidrothermal.
Sistem hidrotermal didefinisikan sebagai sirkulasi fluida panas ( 50° – >500°C ), secara lateral dan vertikal pada temperatur dan tekanan yang bervariasi di bawah permukaan bumi. Sistem ini mengandung dua komponen utama, yaitu sumber panas dan fase fluida. Sirkulasi fluida hidrotermal menyebabkan himpunan mineral pada batuan dinding menjadi tidak stabil dan cenderung menyesuaikan kesetimbangan baru dengan membentuk himpunan mineral yang sesuai dengan kondisi yang baru, yang dikenal sebagai alterasi ( ubahan ) hidrotermal. Endapan mineral hidrotermal dapat terbentuk karena sirkulasi fluida hidrotermal yang melindi ( leaching ), mentranspor, dan mengendapkan mineral-mineral baru sebagai respon terhadap perubahan fisik maupun kimiawi ( Pirajno, 1992, dalam Sutarto, 2004 ).
Alterasi merupakan perubahan komposisi mineralogi batuan ( dalam keadaan padat ) karena adanya pengaruh Suhu dan Tekanan yang tinggi dan tidak dalam kondisi isokimia menghasilkan mineral lempung, kuarsa, oksida atau sulfida logam. Proses alterasi merupakan peristiwa sekunder, berbeda dengan metamorfisme yang merupakan peristiwa primer. Alterasi terjadi pada intrusi batuan beku yang mengalami pemanasan dan pada struktur tertentu yang memungkinkan masuknya air meteorik ( meteoric water ) untuk dapat mengubah komposisi mineralogi batuan.
Alterasi Hidrothermal
Alterasi hidrotermal adalah suatu proses yang sangat kompleks yang melibatkan perubahan mineralogi, kimiawi, dan tekstur yang disebabkan oleh interaksi fluida panas dengan batuan yang dilaluinya, di bawah kondisi evolusi fisio-kimia. Proses alterasi merupakan suatu bentuk metasomatisme, yaitu pertukaran komponen kimiawi antara cairan-cairan dengan batuan dinding ( Pirajno, 1992 ).
Interaksi antara fluida hidrotermal dengan batuan yang dilewatinya ( batuan dinding ), akan menyebabkan terubahnya mineral-mineral primer menjadi mineral ubahan ( mineral alterasi ), maupun fluida itu sendiri ( Pirajno, 1992, dalam Sutarto, 2004 ).
Alterasi hidrotermal akan bergantung pada :
- Karakter batuan dinding.
- Karakter fluida ( Eh, pH ).
- Kondisi tekanan dan temperatur pada saat reaksi berlangsung ( Guilbert dan Park, 1986, dalam Sutarto, 2004 ).
- Konsentrasi.
- Lama aktivitas hidrotermal ( Browne, 1991, dalam Sutarto, 2004 ).
Walaupun faktor-faktor di atas saling terkait, tetapi temperatur dan kimia fluida kemungkinan merupakan faktor yang paling berpengaruh pada proses alterasi hidrotermal ( Corbett dan Leach, 1996, dalam Sutarto, 2004 ). Henley dan Ellis ( 1983, dalam Sutarto, 2004 ), mempercayai bahwa alterasi hidrotermal pada sistem epitermal tidak banyak bergantung pada komposisi batuan dinding, akan tetapi lebih dikontrol oleh kelulusan batuan, tempertatur, dan komposisi fluida.
Batuan dinding (wall rock/country rock) adalah batuan di sekitar intrusi yang melingkupi urat, umumnya mengalami alterasi hidrotermal. Derajat dan lamanya proses alterasi akan menyebabkan perbedaan intensitas alterasi dan derajat alterasi (terkait dengan stabilitas pembentukan). Stabilitas mineral primer yang mengalami alterasi sering membentuk pola alterasi ( style of alteration ) pada batuan ( Pirajno, 1992, dalam Sutarto, 2004 ). Pada kesetimbangan tertentu, proses hidrotermal akan menghasilkan kumpulan mineral tertentu yang dikenal sebagai himpunan mineral ( mineral assemblage ) (Guilbert dan Park, 1986, dalam Sutarto, 2004). Setiap himpunan mineral akan mencerminkan tipe alterasi ( type of alteration ). Satu mineral dengan mineral tertentu seringkali dijumpai bersama ( asosiasi mineral ), walaupun mempunyai tingkat stabilitas pembentukan yang berbeda, sebagai contoh klorit sering berasosiasi dengan piroksen atau biotit. Area yang memperlihatkan penyebaran kesamaan himpunan mineral yang hadir dapat disatukan sebagai satu zona alterasi. Host rock adalah batuan yang mengandung endapan bijih atau suatu batuan yang dapat dilewati larutan, di mana suatu endapan bijih terbentuk. Intrusi maupun batuan dinding dapat bertindak sebagai host rock.
Reaksi – Reaksi Pada Proses Alterasi
Reaksi – reaksi yang berperan penting didalam proses alterasi (reaksi kimia antara batuan dengan fluida) adalah :
- Hidrolisis
Merupakan proses pembentukan mineral baru akibat terjadinya reaksi kimia antara mineral tertentu dengan ion H+, contohnya :
3 KalSiO3 O8 + H2O(aq) Kal3Si3O10 (OH)2 + 6SiO2 + 2K
K – Feldspar Muscovite (Sericite) Kuarsa
- Hidrasi
Merupakan proses pembentukan mineral baru dengan adanya penambahan molekul H2O. Dehidrasi adalah sebaliknya. Reaksi Hidrasi :
2 Mg2SiO4+ 2H2O + 2 H+ Mg3 Si2O5 (OH)4 + Mg2+
Olivine Serpentinite
Reaksi dehidrasi :
Al2Si2O5(OH)4 + 2 SiO2 Al2Si4O10 (OH)4 + Mg2+
Kaolinit Kuarsa Pyrophilite
- Metasomatisme alkali – alkali tanah
Contoh:
2CaCO3 + Mg2+ CaMg (CO3)2 + Ca2+
Calcite Dolomite
- Dekarbonisasi reaksi kimia yang menghasilkan silika dan§ oksida
Contoh :
CaMg(CO3)2 + 2 SiO2 (CaMg)SiO2 + 2 CO2
Dolomite Kuarsa Dioside
- Silisifikasi
Merupakan proses penambahan atau produksi kuarsa polimorfnya, contohnya:
2 CaCO3 + SiO2 + 4 H- 2Ca2- + 2 CO2 + SiO2 + 2 H2O
Calcite Kuarsa
- Silisikasi
Merupakan proses konversi atau penggantian mineral silikat, contohnya:
CaCO3 + SiO2 CaSiO3 + CO2
Calcite Kuarsa Wollastonite
Tipe Alterasi (Type of Alteration)
Creasey (1966, dalam Sutarto, 2004) membuat klasifikasi alterasi hidrotermal pada endapan tembaga porfir menjadi empat tipe yaitu propilitik, argilik, potasik, dan himpunan kuarsa-serisit-pirit. Lowell dan Guilbert (1970, dalam Sutarto, 2004) membuat model alterasi-mineralisasi juga pada endapan bijih porfir, menambahkan istilah zona filik untuk himpunan mineral kuarsa, serisit, pirit, klorit, rutil, kalkopirit. Adapun delapan macam tipe alterasi antara lain :
1. Propilitik
Dicirikan oleh kehadiran klorit disertai dengan beberapa mineral epidot, illit/serisit, kalsit, albit, dan anhidrit. Terbentuk pada temperatur 200°-300°C pada pH mendekati netral, dengan salinitas beragam, umumnya pada daerah yang mempunyai permeabilitas rendah. Menurut Creasey (1966, dalam Sutarto, 2004), terdapat empat kecenderungan himpunan mineral yang hadir pada tipe propilitik, yaitu :
- Klorit-kalsit-kaolinit.
- Klorit-kalsit-talk.
- Klorit-epidot-kalsit.
- Klorit-epidot.
2. Argilik
Pada tipe argilik terdapat dua kemungkinan himpunan mineral, yaitu muskovot-kaolinit-monmorilonit dan muskovit-klorit-monmorilonit. Himpunan mineral pada tipe argilik terbentuk pada temperatur 100°-300°C (Pirajno, 1992, dalam Sutarto, 2004), fluida asam-netral, dan salinitas rendah.
3 . Potasik
Zona potasik merupakan zona alterasi yang berada pada bagian dalam suatu sistem hidrotermal dengan kedalaman bervariasi yang umumnya lebih dari beberapa ratus meter. Zona alterasi ini dicirikan oleh mineral ubahan berupa biotit sekunder, K Feldspar, kuarsa, serisit dan magnetite. Pembentukkan biotit sekunder ini dapat terbentuk akibat reaksi antara mineral mafik terutama hornblende dengan larutan hidrotermal yang kemudian menghasilkan biotit, feldspar maupun pyroksen.
Dicirikan oleh melimpahnya himpunan muskovit-biotit-alkali felspar-magnetit. Anhidrit sering hadir sebagai asesori, serta sejumlah kecil albit, dan titanit (sphene) atau rutil kadang terbentuk. Alterasi potasik terbentuk pada daerah yang dekat batuan beku intrusif yang terkait, fluida yang panas (>300°C), salinitas tinggi, dan dengan karakter magamatik yang kuat.
Selain biotisasi tersebut mineral klorit muncul sebagai penciri zona ubahan potasik ini. Klorit merupakan mineral ubahan dari mineral mafik terutama piroksin, hornblende maupun biotit, hal ini dapat dilihat bentuk awal dari mineral piroksin terlihat jelas mineral piroksin tersebut telah mengalami ubahan menjadi klorit. Pembentukkan mineral klorit ini karena reaksi antara mineral piroksin dengan larutan hidrotermal yang kemudian membentuk klorit, feldspar, serta mineral logam berupa magnetit dan hematit.
Alterasi ini diakibat oleh penambahan unsur pottasium pada proses metasomatis dan disertai dengan banyak atau sediktnya unsur kalsium dan sodium didalam batuan yang kaya akan mineral aluminosilikat. Sedangkan klorit, aktinolite, dan garnet kadang dijumpai dalam jumlah yang sedikit. Mineralisasi yang umumnya dijumpai pada zona ubahan potasik ini berbentuk menyebar dimana mineral tersebut merupakan mineral – mineral sulfida yang terdiri atas pyrite maupun kalkopirit dengan pertimbangan yang relatif sama.
Bentuk endapan berupa hamburan dan veinlet yang dijumpai pada zona potasik ini disebabkan oleh pengaruh matasomatik atau rekristalisasi yang terjadi pada batuan induk ataupun adanya intervensi daripada larutan magma sisa (larutan hidrotermal) melalui pori-pori batuan dan seterusnya berdifusi dan mengkristal pada rekahan batuan. Berikut ini ciri – ciri salah satu contoh mineral ubahan pada zona potasik yaitu Actinolite.
- Sifat Fisik
Sifat fisik dari mineral ini ditunjukkan dengan warna hijau sampai hijau kehitaman, Hal ini dikarenakan komposisi kimia yang terkandung pada mineral ini, densitas pada mineral ini sebesar 3.03 – 3.24 g/cm3 kekerasan mineral ini adalah 5 – 6 skala mohs, dengan cerat berwarna agak putih terang, kilap mineral ini termasuk kilap kaca sampai sutera, Karena komposisi serta tekstur dan sistem mineral pada mineral maka mineral ini dapat ditembus oleh cahaya hal itu sejalan dengan partikel paretikel pembentuk mineral ini yang mudah dilalui oleh cahaya, Relief permukaan sedang/lembut.
Sesuai dengan lingkungan pembentukanya yaitu pada daerah metamorfosa dan terbentuk di dalam sekis kristalin dimana temperatur suhu sangat berpengaruh dalam pembentukan mineral ini, maka mineral ini banyak ditemukan berasosiasi dengan mineral magnetit dan hematit.
- Sifat Kimia
Komposisi kimia yang penting Ca, H, Mg, O, Si, merupakan salah satu mineral anggota Amphibole, rumus kimia Ca2(Mg, Fe2+)5(Si8O22)(OH)2.
- Sifat Optik
Sistem kristal monoklin, kelas kristal prismatic, kembaran berbentuk parallel, optik (α = 14.56-1.63, β= 1.61-1.65, γ = 1.63-1.66).
4. Filik
Zona alterasi ini biasanya terletak pada bagian luar dari zona potasik. Batas zona alterasi ini berbentuk circular yang mengelilingi zona potasik yang berkembang pada intrusi. Zona ini dicirikan oleh kumpulan mineral serisit dan kuarsa sebagai mineral utama dengan mineral pyrite yang melimpah serta sejumlah anhidrit. Mineral serisit terbentuk pada proses hidrogen metasomatis yang merupakan dasar dari alterasi serisit yang menyebabkan mineral feldspar yang stabil menjadi rusak dan teralterasi menjadi serisit dengan penambahan unsur H+, menjadi mineral phylosilikat atau kuarsa. Zona ini tersusun oleh himpunan mineral kuarsa-serisit-pirit, yang umumnya tidak mengandung mineral-mineral lempung atau alkali feldspar. Kadang mengandung sedikit anhidrit, klorit, kalsit, dan rutil. Terbentuk pada temperatur sedang-tinggi (230°-400°C), fluida asam-netral, salinitas beragam, pada zona permeabel, dan pada batas dengan urat.
Dominasi endapan dalam bentuk veinlet dibandingkan dengan endapan yang berbentuk hamburan kemungkinan disebabkan oleh berkurangnya pengaruh metasomatik yang lebih mengarah ke proses hidrotermal. Hal ini disebabkan karena zona ini semakin menjauh dari pusat intrusi serta berkurangnya kedalaman sehingga interaksi membesar dan juga diakibatkan oleh banyaknya rekahan pada batuan sehingga larutan dengan mudah mengisinya dan mengkristal pada rekahan tersebut, mineralisasi yang intensif dijumpai pada vein kuarsa adalah logam sulfida berupa pirit, kalkopirit dan galena. Berikut ini ciri – ciri salah satu contoh mineral ubahan pada zona potasik yaitu Serisit.
- Sifat Fisik
Tidak berwarna – putih; kekerasan 5.5 – 6 skala mohs; kilap kaca; dapat ditembus oleh cahaya; pecahan conchoidal; cerat putih. Umumnya berasosiasi dengan mineral kuarsa, muskovit, dan mineral-mineral bijih seperti pirit, kalkopirit,galena, dan lainya. Rumus kimia Ca[Al2Si4O12].2H2O.
- Sifat Optik
Sistem kristal monoclinic dengan kelas kristal prismatic, surface relief sedang, optic nα = 1.498 nγ = 1.502.
5. Propilitik dalam ( inner propilitik )
Menurut Hedenquist dan Linndqvist (1985, , dalam Sutarto, 2004), zona alterasi pada sistem epitermal sulfidasi rendah (fluida kaya klorida, pH mendekati netral) ummnya menunjukkan zona alterasi seperti pada sistem porfir, tetapi menambahkan istilah inner propylitic untuk zona pada bagian yang bertemperatur tinggi (>300°C), yang dicirikan oleh kehadiran epidot, aktinolit, klorit, dan ilit.
6. Argilik lanjut ( advanced argilic )
Sedangkan untuk sistem epitermasl sulfidasi tinggi (fluida kaya asam sulfat), ditambahkan istilah advanced argilic yang dicirikan oleh kehadiran himpunan mineral pirofilit+diaspor±andalusit±kuarsa±turmalin±enargit-luzonit (untuk temperatur tinggi, 250°-350°C), atau himpunan mineral kaolinit+alunit±kalsedon±kuarsa±pirit (untuk temperatur rendah,< 180 °C).
7. Skarn
Alterasi ini terbentuk akibat kontak antara batuan sumber dengan batuan karbonat, zona ini sangat dipengaruhi oleh komposisi batuan yang kaya akan kandungan mineral karbonat. Pada kondisi yang kurang akan air, zona ini dicirikan oleh pembentukan mineral garnet, klinopiroksin dan wollastonit serta mineral magnetit dalam jumlah yang cukup besar, sedangkan pada kondisi yang kaya akan air, zona ini dicirikan oleh mineral klorit,tremolit – aktinolit dan kalsit dan larutan hidrotermal. Garnet-piroksen-karbonat adalah kumpulan yang paling umum dijumpai pada batuan induk karbonat yang orisinil (Taylor, 1996, dalam Sutarto, 2004). Amfibol umumnya hadir pada skarn sebagai mineral tahap akhir yang menutupi mineral-mineral tahap awal. Aktinolit (CaFe) dan tremolit (CaMg) adalah mineral amfibol yang paling umum hadir pada skarn. Jenis piroksen yang sering hadir adalah diopsid (CaMg) dan hedenbergit (CaFe).
Alterasi skarn terbentuk pada fluida yang mempunyai salinitas tinggi dengan temperatur tinggi (sekitar 300°-700°C). Proses pembentukkan skarn akibat urutan kejadian Isokimia – metasomatisme – retrogradasi.
Dijelaskan sebagai berikut :
- Isokimia merupakan transfer panas antara larutan magama dengan batuan samping, prosesnya H2O dilepas dari intrusi dan CO2 dari batuan samping yang karbonat. Proses ini sangat dipengaruhi oleh temperatur,komposisi dan tekstur host rocknya (sifat konduktif).
- Metasomatisme, pada tahap ini terjadi eksolusi larutan magma kebatuan samping yang karbonat sehingga terbentuk kristalisasi pada bukaan – bukaan yang dilewati larutan magma.
- Retrogradasi merupakan tahap dimana larutan magma sisa telah menyebar pada batuan samping dan mencapai zona kontak dengan water falk sehingga air tanah turun dan bercampur dengan larutan.
Berikut ini ciri – ciri salah satu contoh mineral ubahan pada zona potasik yaitu Kalsit
- Sifat Fisik
Secara megaskopis mineral ini berwarna putih, kuning,dan merah; kekerasan 3 skala mohs; cerat putih; pecahan uneven/irrengular ; densitas 2.711 g/cm3; belahan 1 arah; kilap kaca, dapat ditembus oleh cahaya.
- Sifat Kimia.
Komposisi kimia yang penting C, Ca, O; merupakan anggota dari Calcite grup mineral; mengandung unsur karbonat; rumus kimia CaCO3. Mineral ini kaya terhadap kandungan kalsium sehingga dalam proses pelarutan dengan mineral asam ia sangat cepat beraksi.
- Sifat Optik.
Sistem kristal trigonal, termasuk dalam kelas hexagonal scalenohedral, optik nω = 1.640 – 1.660 nε = 1.486.
- Lingkungan Pembentukan.
Terbentuk di laut, sebagai nodul dalam batuan sedimen, selain itu juga bisa terbentuk pada urat-urat hydrothermal sebagai mineral gang di dalam berbagai batuan beku. Umumnya berasosiasi dengan mineral magnetit, hematit.
8. Greisen
Himpunan mineral pada greisen adalah kuarsa-muskovit (atau lipidolit) dengan sejumlah mineral asesori seperti topas, turmalin, dan florit yang dibentuk oleh alterasi metasomatik post-magmatik granit (Best, 1982, Stempork, 1987, dalam Sutarto, 2004).
9. Silisifikasi
Merupakan salah satu tipe alterasi hidrotermal yang paling umum dijumpai dan merupakan tipe terbaik. Bentuk yang paling umum dari silika adalah (E-quartz, atau β-quartz, rendah quartz, temperatur tinggi, atau tinggi kandungan kuarsanya (>573°C), tridimit, kristobalit, opal, kalsedon. Bentuk yang paling umum adalahquartz rendah, kristobalit, dan tridimit kebanyakan ditemukan di batuan volkanik. Tridimit terutama umum sebagai produk devitrivikasi gelas volkanik, terbentuk bersama alkali felspar.
Selama proses hidrotermal, silika mungkin didatangkan dari cairan yang bersirkulasi, atau mungkin ditinggalkan di belakang dalam bentuk silika residual setelah melepaskan (leaching) dari dasar. Solubilitas silika mengalami peningkatan sesuai dengan temperatur dan tekanan, dan jika larutan mengalami ekspansi adiabatik, silika mengalami presipitasi, sehingga di daerah bertekanan rendah siap mengalami pengendapan (Pirajno, 1992).
10. Serpentinisasi
Batuan yang telah ada beruabah menjadi serperite yang mineral utamanya adalah Cripiolite disamping ada juga mineral – mineral lain. Batuan semuala biasanya batuan basa ( andesitte ) yang berubah karena proses hidrotermal maka batuan basa ini berubah menjadi serpertisasi. Misal : Geruilite di sulawesi dari kalimantan diubah menjadi serpentinisasi. Serpentinisasi bisa pula akibat dari pada Weathering, tetapi daerah yang teralterasi relatif terbatas kecil.
Permasalahannya, seringkali kita mendapati dalam satu contoh batuan ditemukan beberapa mineral dari dua tipe atau lebih. Prosedur yang baik untuk tahap awal observasi batuan tersebut di atas adalah menulis semua mineral yang tampak sebagai himpunan mineral. Apabila dalam satu batuan dijumpai mineral-mineral klorit, kuarsa, kalsit, dan kaolinit, maka disebut sebagai himpunan mineral klorit-kuarsa-kalsit-kaolinit (Sutarto, 2004).
Pola Alterasi (Style of Alteration)
Kuantitas alterasi pada batuan disebabkan oleh derajat dan lamanya proses alterasi. Terdapat tiga jenis pola alterasi (Sutarto, 2004), yaitu :
a. Pervasive
Yaitu penggantian seluruh atau sebagian besar mineral pembentuk batuan. Semua mineral primer pembentuk batuan telah mengalami alterasi, walaupun intensitasnya berbeda.
b. Selectively pervasive
Proses alterasi hanya terjadi pada mineral-mineral tertentu pada batuan. Misalnya klorit pada andesit hanya mengganti piroksen saja, sedangkan plagioklas tidak ada yang terubah sama sekali.
c. Non-pervasive
Hanya bagian tertentu dari keseluruhan batuan yang mengalami alterasi hidrotermal.
Proporsi Mineral Alterasi
Proporsi satu mineral alterasi tertentu dalam batuan digolongkan sebgai berikut (Sutarto, 2004) :
- Jarang (rare) : < 1 %
- Sedikit (minor) : 1-5%
- Sedang (moderate) : 5-10%
- Banyak (major) : 10-50%
- Melimpah (predominant) : >50%
Derajat Alterasi (Rank of Alteration)
Derajat alterasi terkait dengan tingginya temperatur pada saat proses alterasi berlangsung. Derajat temperatur dicirikan oleh mineral-mineral indeks temperatur tertentu. Sebagai contoh adalah sikuen pada mineral-mineral kalsium aluminium silikat.
Temperatur (T)
120 Mordenit (NaCaAlSi)
210 Laumonit (NaAlSiO)
250 Wairakit (CaAlSi)
300 Epidot (Ca (Al,Fe) Si)
Garnet (CaAlSi)
Intensitas Alterasi
a. Tidak terubah (unaltered) : tidak ada mineral sekunder
b. Lemah (weak) : mineral sekunder <25 batuan="batuan" span="span" volume="volume">25>
c. Sedang (moderate) : mineral sekunder 25-75% volume batuan
d. Kuat (strong) : mineral sekunder >75% volume batuan
e. Intens (intense) : seluruh mineral primer terubah (kecuali kuarsa, zirkon, dan apatit), tetapi tekstur primernya masih terlihat
f. Total (total) : seluruh mineral primer terubah (kecuali kuarsa, zirkon, dan apatit), serta tekstur primer sudah tidak tampak lagi
Ukuran Mineral
Penggolongan ukuran mineral seperti yang digunakan pada batuan beku (Morrison, 1997) :
- Sangat halus (very fine) : <0 mm="mm" span="span">0>
- Halus (fine) : 0,05 – 1 mm
- Sedang (medium) : 1 – 5 mm
- Kasar (coarse) : 5 – 30 mm
- Sangat kasar (very coarse) : >30 mm
Alterasi yang Terjadi Pada fase Hidrothermal
Setiap tipe endapan hidrothermal selalu membawa mineral-mineral yang tertentu (spesifik), berikut altersi yang ditimbulkan barbagai macam batuan dinding. Tetapi minera-mineral seperti pirit (FeS2), kuarsa (SiO2), kalkopirit (CuFeS2), florida-florida hampir selalu terdapat dalam ke tiga tipe endapan hidrothermal. Sedangkan alterasi yang ditimbulkan untuk setiap tipe endapan pada berbagai batuan dinding dapat dilihat pada Tabel 1.
Tabel 1. Alterasi-alterasi yang terjadi pada fase hidrothermal
Keadaan Batuan dinding Hasil alterasi
- Epithermal Batuan gamping Silisifikasi
Lava Alunit, clorit, pirit, beberapa sericit, mineral-mineral lempung
Batuan beku intrusi Klorit, epidot, kalsit, kwarsa, serisit, mineral-mineral lempung
- Mesothermal Batuan gamping Silisifikasi
Serpih, lava Selisifikasi, mineral-mineral lempung
Batuan beku asam Sebagian besar serisit, kwarsa, beberapa mineral lempung
Batuan beku basa Serpentin, epidot dan klorit
- Hypothermal Batuan granit, sekis lava Greissen, topaz, mika putih, tourmalin, piroksen, amphibole.
Paragenesis endapan hipothermal dan mineral gangue adalah : emas (Au), magnetit (Fe3O4), hematit (Fe2O3), kalkopirit (CuFeS2), arsenopirit (FeAsS), pirrotit (FeS), galena (PbS), pentlandit (NiS), wolframit : Fe (Mn)WO4, Scheelit (CaWO4), kasiterit (SnO2), Mo-sulfida (MoS2), Ni-Co sulfida, nikkelit (NiAs), spalerit (ZnS), dengan mineral-mineral gangue antara lain : topaz, feldspar-feldspar, kuarsa, tourmalin, silikat-silikat, karbonat-karbonat
Sedangkan paragenesis endapan mesothermal dan mineral gangue adalah : stanite (Sn, Cu) sulfida, sulfida-sulfida : spalerit, enargit (Cu3AsS4), Cu sulfida, Sb sulfida, stibnit (Sb2S3), tetrahedrit (Cu,Fe)12Sb4S13, bornit (Cu2S), galena (PbS), dan kalkopirit (CuFeS2), dengan mineral-mineral ganguenya : kabonat-karbonat, kuarsa, dan pirit.
Paragenesis endapanephitermal dan mineral ganguenya adalah : native cooper (Cu), argentit (AgS), golongan Ag-Pb kompleks sulfida, markasit (FeS2), pirit (FeS2), cinabar (HgS), realgar (AsS), antimonit (Sb2S3), stannit (CuFeSn), dengan mineral-mineral ganguenya : kalsedon (SiO2), Mg karbonat-karbonat, rhodokrosit (MnCO3), barit (BaSO4), zeolit (Al-silikat)
Batas – batas peralihan antara batuan – batuan yang terbentuk pada kondisi hypotermal ; mesotermal dan epitermal tidak begitu terlihat, serupa bisa diberikan dengan membandingkan kandungan – kandungan mineralnya pada endapan hypotermal, mesotermal dan epitermal, karena ada mineral yang khas terdapat pada kondisi yang tertentu.
Disamping itu ada juga mineral – mineral yang kita dapat pada semua kondisi (hypotermal , mesotermal dan epitermal). Misal : mineral Pirite, Chalcopirite dan kwarsa yang bisa terbentuk pada hampir semua temperatur dari juga hampir semua batuan memungkinkan terdapatnya mineral tersebut.
Secara umum alterasi hidrotermal akan membentuk satu “ Aureole “ “ hale “ terhadap tubuh bijih hidrotermal ataupun “ Channelwey “ termineralisasi yang pada umumnya dapat diindentifikasi secaara megaskopis di lapangan dan dipetakan menjadi beberapa zone – subzone berdasarkan asosiasi minerral khusus.
MINERALISASI DAN ALTERASI
Mineralisasi adalah suatu proses pengendapan mineral bijih (metal) dari media yang membawanya akibat perubahan lingkungan kimia dan fisik sekitarnya.
Mineralisasi = “ Ore Deposit ”
Klasifikasi “Ore Deposit”
- Deposit yang berhubungan dengan Batuan Beku Mafik (Kimberlites, Carbonatite dll.)
- Deposit yang berhubungan dengan Oceanic Crust (Alpine Peridotite Chromite dll.)
- Deposit yang berhubungan dengan intrusi intermediate dan felsik (Porphyry Base Metal Deposit, Skarn Deposit dll.)
- Deposit yang berhubungan dengan Subaerial Volcanism (Epithermal Silver-Gold Deposit, Carlin-Type Gold Deposit dll.)
- Deposit yang berhubungan dengan Submarine Volcanism (VMS Deposit, Banded Iron Formation dll.)
Porphyry Copper Deposit
Terkait dengan “porphyritic rocks”
1. Umumnya berupa epizonal atau hypabyssal dasit, latit, quartz latit, rhyolit, quartz diorit, monzonit, quartz monzonit dan granit.
2. Porphyritic texture terjadi akibat proses-proses kimia, termal, barometric yang berlangsung pada kondisi hypabyssal dengan tekanan 1-2kb, kedalaman 1.5-4km dan temperatur 750-850 C.
In Fact : Jantung porphyry copper deposit adalah lingkungan epizonal.
- Tekanan 1-2kb.
- Temperatur 250-500 C dan jarang 600 atau 700 C.
Gambar 1. Alterasi pada Porphyry Copper
Gambar 2. Distribusi bijih dan polanya pada Porphyry Copper
Gambar 3. Porphyry Copper Deposit di Chuquicamata, Chili
Gambar 4 . Aspek Fluida Hidrothermal
Aspek-aspek Fluida Hidrotermal :
- Temperatur
- Tekanan
- Komposisi kimia
Dalam pembentukan alterasi yang paling penting adalah komposisi kimia
Titik 1 mewakili komposisi larutan chlorine yang dalam kesetimbangan kimia dengan granodiorit dan “starting point” dari evolusi fluida hidrothermal
Skarn Deposit
1. Terbentuk akibat interaksi fluida magmatic bertemperatur tinggi dengan batuan samping limestone yang diikuti oleh proses metasomatism dan pengendapan bijih
2. Berkembang baik pada batas tubuh intrusi berukuran kecil hingga sedang dengan komposisi intermediate seperti monzonit dan granodiorit.
Gambar 4-5 Skarn Deposit
ALTERASI
Alterasi adalah Setiap perubahan dalam mineralogi suatu batuan yang terjadi karena proses-proses fisika dan kimia, khususnya oleh aktivitas fluida hydrothermal.
Alterasi dicirikan oleh pembentukan mineral-mineral sekunder yang mengandung hidroksil (biotit, serisit, khlorit, mineral lempung) disamping kuarsa dan juga karbonat.
Fenomena Alterasi dapat disebabkan oleh:
- Proses diagenesis pada sedimen
- Metamorfosa
- Proses “cooling” post magmatic/volkanik
- Proses mineralisasi
Produk Alterasi tergantung pada :
- Jenis reaksi alterasi
- Komposisi batuan samping (wall rock)
- Temperatur dan tekanan
Alterasi terjadi akibat reaksi fluida dengan “wall rocks”
Reaksi dalam proses alterasi:
- Hydrolisis (keterlibatan H+)
- Hydration-dehydration (lepasnya molekul air dari fluid ke mineral dan sebaliknya)
- Alkali dan alkali tanah metasomatism (substitusi kation)
- Decarbonation (pembebasan CO2)
- Silicification (penambahan SiO2)
- Silication (penggantian oleh silikiat)
- Oksidasi dan reduksi
Kontrol Temperatur dan pH Dalam Mineralogi Alterasi
Menurut Corbett dan Leach (1996) temperatur dan pH fluida merupakan dua faktor yang paling utama yang mempengaruhi mineralogi sistem hidrotermal, (Corbett dan Leach, 1996) membagi kelompok alterasi menjadi 7 group utama :
1. Group Mineral Silika /kuarsa.
Merupakan mineral yang stabil pada pH rendah < 2. Pada kondisi yang sangat asam ini, silika opalin, kristobalit, dan tridimit terbentuk pada suhu <100 amorf="amorf" c.="c." dingin="dingin" fase="fase" fluida="fluida" kondisi="kondisi" kuarsa="kuarsa" lebih="lebih" merupakan="merupakan" pada="pada" ph="ph" silika="silika" span="span" suhu="suhu" terbentuk="terbentuk" tinggi.="tinggi." tinggi="tinggi" utama="utama" yang="yang">100>
2. Group Mineral Alunit.
Alunit ternentuk pada pH yang sedikit lebih besar dari 2, terbentuk bersama dengan group silika dalam rentang temperatur yang besar, berasosiasi dengan andalusit pada temperatur yang tinggi (> 300-350C) dan korundum hadir pada suhu yang lebih tinggi lagi. Ada 4 macam alunit, alunit steam-heated, alunit supergen, alunit magmatic, dan alunit liquid.
3. Group Mineral Kaolinit.
Dijumpai pada pH sekitar 4, biasa hadir bersama group alunit-andalusit-korundum pada pH 3-4. Halloysit merupakan produk supergene utama group ini. Kaolinit terbentuk pada kedalaman dangkal dan temperatur yang rendah. Dikit terbentuk pada suhu yang tinggi dan pada suhu yang lebih tinggi lagi akan terbentuk pirophilit. Diaspor setempatsetempat dijumpai dalam zona silifikasi yang intens dengan group alunit dan/atau kaolinit.
4. Group Mineral Illit.
Terbentuk pada fluida dengan pH yang lebih tinggi (4-6). Smektit terbentuk pada temperatur < 100°-150ºC, interlayer illit-smektit (100°-200ºC), illit (200°-250ºC), serisit (muskovit) >200-250 C, phengit >250-300C. Kandungan smektit pada interlayer illit smektit akan berkurang bersamaan dengan naiknya temperature. 22 Interlayer illit-smektit dapat menunjukkan temperatur fluida hidrothermal padakisaran 160-220 C (Lawless dan White, 1997). Alterasi dengan mineral alterasi yang dominan illit menunjukkan temperatur fluida pada kisaran 220-270 C (Lawless dkk, 1997). Sebagaimana illit umumnya stabil pada temperature lebih tinggi dari 220 C, berkurangnya temperatur akan meningkatkan stabilitas smektit. Pada umumnya illit banyak dijumpai pada zona permeabel dan permeabilitas berkurang dengan bertambahnya mineral klorit (Lawless dkk, 1997).
5. Group Mineral Klorit
Pada kondisi pH yang sedikit asam mendekati netral, fase klorit-karbonat menjadi dominan, dimana mineral ini terbentuk bersama dengan group illit pada lingkungan transisi pH 5-6. interlayer klorit-smektit akan terbentuk pada temperatur rendah, dan klorit akan dominan pada suhu yang lebih tinggi. Klorit bukan merupakan mineral yang baik untuk indikator paleo temperatur, karena dapat dijumpai pada temperatur rendah sampai temperatur lebih tinggi dari 300 C, tetapi mineral ini merupakan mineral yang baik untuk menunjukkan pH pembentukan yang mendekati netral 6-7 (Lawless dan White, 1997).
6. Group Mineral Kalksilikat
Group kalksilikat terbentuk pada kondisi pH netral sampai alkali, pada temperatur rendah membentuk zeolit-klorit-karbonat, dan epidot diikuti amfibol (umumnya aktinolit) terbentuk pada temperatur yang lebih tinggi. Di beberapa sistem prehnit atau pumpellyit dijumpai berasosiasi dengan epidot. Epidot dengan kristalinitas yang rendah terbentuk pada suhu 180-220 C, pada kristalinitas yang lebih baik pada suhu yang lebih tinggi (>220-250 C). Amfibol sekunder (aktinolit) terbentuk pada suhu 280-300 C. Biotit umumnya tersebar luas di dalam atau di sekitar intrusi porfiri dan terbentuk pada suhu 300-325 C.
7. Phase Mineral Lain
Mineral Karbonat terbentuk pada range pH (> 4) dan temperatur yang lebih luas, dan berasosiasi dengan phase kaolin, illit, klorit, dan kalk-silikat. Mineral yang termasuk dalam kelompok ini adalah siderit, rhodokrosit, ankerit, kutnahorit, dolomit, magnesian-kalsit, dan kalsit. Mineral Feldspar umumnya berassosiasi dengan phase klorit dan kalk-silikat, terbentuk pada pH netral sampai basa. Mineral yang termasuk kelompok ini adalah albit, adularia, dan orthoklas. Mineral Sulfat terbentuk pada hampir semua suhu dan temperatur dalam hidrothermal system. Mineral yang termasuk dalam kelompok ini adalah anhidrit, gipsum, dan jarosit.
Alterasi merupakan perubahan komposisi mineralogy batuan (dalam keadaan padat) karena pengaruh Suhu dan Tekanan yang tinggi dantidak dalam kondisi isokimia menghasilkan mineral lempung, kuarsa, oksida atau sulfida logam. Proses alterasi merupakan peristiwa sekunder, berbeda dengan metamorfisme yang merupakan peristiwa primer. Alterasi terjadi pada intrusi batuan beku yang mengalami pemanasan dan pada struktur tertentu yang memungkinkan masuknya air meteoric untuk dapat mengubah komposisi mineralogi batuan.
Adapun beberapa contoh-contoh mineral yang dapat terbentuk dari proses alterasi adalah sebagai berikut :
1. ActinolitCa2(Mg,Fe)5Si8O22(OH)2, Mineral ini menunjukkan warna hijau gelap, sistem kristal monoklin, belahan sempurna, kilap kaca, cerat berwarna putih dan menunjukkan bentuk elongated. Terbentuk pada suhu 800 – 9000 C, dihasilkan oleh alterasi dari piroksen pada gabro dan diabas, pada proses metamorfik green schist facies.
2. Adularia KAlSi3O8, Mineral ini menunjukkan warna putih-pink, sistem kristal monoklin, belahan 2 arah, kilap kaca, cerat putih dan menunjukkan bentuk prismatik. Terbentuk pada suhu 7000 C, akibat proses hidrotermal dengan temperatur yang rendah berupa urat.
3. Albite NaAlSi3O8, Mineral ini menunjukkan warna putih, sistem kristal triklin, belahan 3 arah, pecahan tidak rata – konkoidal, kilap kaca, cerat putih. Terbentuk pada suhu 750 – 8000 C, akibat proses hidrotermal dengan suhu yang rendah dan alterasi dari plagioklas, proses metamorfik dengan temperatur dan tekanan yang rendah, proses magmatisme dan proses albitisasi.
4. BiotiteK(Mg,Fe)3AlSi3O10(F,OH)2, Mineral ini menunjukkan warna hitam, sistem kristal monoklin, belahan sempurna, pecahan tidak rata, kilap kaca dan mutiara, cerat putih dan menunjukkan bentuk tabular. Terbentuk pada temperatur 700 – 800 0 C, terbentuk akibat proses magmatisme, metamorphisme dan proses hidrotermal. Dapat terbentuk pada daerah magmatisme.
5. Clinopiroxene XY(Si,Al)2O6, Mineral ini menunjukkan warna hijau, biru, sistem kristal monoklin, belahan tidak rata, kilap kaca, cerat putih dan menunjukkan betuk prismatik. Terbentuk pada suhu 900 – 1000 0 C, terbentuk akibat proses magmatik mafik dan ultramafikplutonic, pada proses metamorfisme kontak dan regional dengan temperatur yang tinggi. Dapat terbentuk pada daerah magmatisme bersifat basa.
6. Diopside MgCaSi2O6, Mineral ini menunjukkan warna hijau, biru, sistem kristal monoklin, belahan tidak rata, kilap kaca, cerat putih dan menunjukkan betuk prismatik. Terbentuk pada suhu 900 – 1000 0 C, terbentuk akibat proses magmatik mafic dan ultramafic plutonic, pada proses metamorphisme kontak. Lingkungan daerah magmatisme.
7. Dolomite CaMg(CO3)2, Mineral ini menunjukkan warna putih-pink, sistem kristal heksagonal, belahan sempurna, pecahan subkonkoidal, kilap kaca, cerat putih. Terbentuk dari proses hidrotermal pada suhu yang rendah berupa urat, juga dapat terbentuk pada lingkungan laut akibat proses dolomitisasi batugamping dan proses metamorfik (dolostone protoliths).
8. Epidote Ca2Al2(Fe3+;Al)(SiO4)(Si2O7)O(OH), Mineral ini menunjukkan warna hijau, sistem kristal monoklin, belahan jelas 2 arah, pecahan tidak rata, kilap kaca, cerat putih dan menunjukkan bentuk prismatik. Terbentuk pada temperatur 900 – 10000 C, terbentuk akibat proses metamorphisme pada fasiesgreen schist dan glaucophane schist dan hidrotermal (propylitic alteration). Proses magmatik sangat jarang menghasilkan mineral ini.
9. Garnet X3Y2(SiO4)3, Mineral ini menunjukkan warna hijau gelap atau merah gelap, sistem kristal rhombic dodekahedron, belahan tidak sempurna, pecahan konkoidal dan menunjukkan kenampakan tabular. Terbentuk pada suhu 1600 – 18000 C, dapat terbentuk pada zona kontak magmatic plutons dengan temperatur yang tinggi, yaitu pada mineralisasi skarn. Selain itu juga dapat terbentuk akibat proses metamorfisme. Lingkungan terbentuknya pada daerah magmatisme.
10. Heulandite (Ca,Na)2-3Al3(Al,Si)2Si13O36·12H2O, Mineral ini menunjukkan warna putih – pink, sistem kristal monoklin, belahan 1 arah, pecahan subkonkoidal – tidak rata, kilap kaca, cerat putih dan menunjukkan bentuk tabular. Terbentuk pada suhu 600 – 7000 C, akibat proses alterasi dari vitrik tuff dan proses hidrotermal berupa urat pada basalt, gneiss dan schist.
11. Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)], Mineral ini tidak berwarna (bening), dan sebagian menunjukkan warna putih-abu-abu, sistem kristal monoklin, belahan 1 arah sempurna, kilap lemak, bersifat elastis dan menunjukkan bentuk tabular. Terbentuk pada suhu 700 – 8000 C, hasil dari proses magmatisme khususnya batuan beku dalam yang kaya akan alumina dan silika (pegmatit dan granit), dapat merupakan hasil proses metamorfik (mudrock sediment) dan hasil alterasi dari feldspar.
12. Kaolinite Al2Si2O5(OH)4, Mineral ini menunjukkan warna putih, sistem kristal monoklin, belahan sempurna, kilap mutiara. Terbentuk akibat adanya proses pelapukan dari mineral yang kaya Al dan hasil proses alterasi dari mineral yang kaya Al dapat terbentuk pada daerah danau.
13. Laumontite Ca(AlSi2O6)2·4H2O,Mineral ini menunjukkan warna putih – abu-abu – pink, sistem kristal monoklin, belahan 3 arah, pecahan rata, kilap mutiara, cerat putih dan menunjukkan bentuk elongated prismatik. Terbentuk pada suhu 600 – 7000 C, akibat proses hidrotermal yang mengisi rongga-rongga pada batuan beku, batuan sedimen dan metamorf.
14. Microcline (KAlSi3O8),Mineral ini menunjukkan warna putih-hijau, sistem kristal triklin, belahan 2 arah, pecahan tidak rata, kilap kaca-mutiara, cerat putih dan menunjukkan bentuk prismatik. Terbentuk pada suhu 7000C, akibat proses magmatik yang menghasilkanplutonic rock yaitu pegmatit, proses metamorfik dengan temperatur yang rendah yaitu pada gneiss dan schist dan proses hidrotermal.
15. Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O, Mineral ini menunjukkan warna putih – abu-abu, sistem kristal monoklin. Terbentuk pada daerah beriklim tropis yang merupakan hasil alterasi dari feldspar pada batuan yang miskin silika. Hasil dari pelapukan glass volkanik dan tuff dari proses hidrotermal.
16. Prehnite Ca2Al(AlSi3O10)(OH)2, Mineral ini menunjukkan warna kehijauan, sistem kristal orthorombic, belahan sempurna, pecahan tidak rata, kilap kaca, cerat berwarna putih dan menunjukkan bentuk tabular. Terbentuk pada suhu 700 – 8000 C, akibat proses metamorfisme dan proses hidrotermal yang mengisi rongga pada batuan volkanik basalt.
17. Wairakite CaAl2Si4O12•2(H2O), Mineral ini menunjukkan warna putih, dapat terbentuk pada suhu 600 – 7000 C, akibat proses hidrotermal (geothermal environment), proses metamorfisme burial dengan suhu yang rendah, reksi dehidrasi dari laumontite pada sedimen tuff.
18.Wollastonite (CaSiO3), Mineral ini menunjukkan warna putih, sistem kristal triklin, kilap kaca, belahan sempurna 3 arah, pecahan tidak rata, cerat putih dan menunjukkan bentuk tabular. Terbentuk pada suhu 11000C, akibat proses metamorfisme kontak pada calcareous dan marl rocks dan dapat terjadi akibat metamorfisme regional dengan tekanan yang rendah.
19. Zeolite Na2Al2Si3O10-2H2O, Mineral ini menunjukkan warna abu-abu – putih, sistem kristal monoklin, belahan sempurna 3 arah, pecahan tidak rata, kilap kaca, cerat putih dan menunjukkan bentuk elongated-prismatik. Terbentuk pada temperatur 600 – 7000 C, akibat proses hidrotermal yang mengisi urat dan rongga pada batuan beku dan proses metamorpisme burial.
for sumber : http://freelander09.wordpress.com/2009/06/27/
Harap Berkomentar Yang Baik Ya.
EmoticonEmoticon